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We consider classical hard-core particles hopping stochastically on two parallel
chains in the same or opposite directions with an inter- and intra-chain inter-
action. We discuss general questions concerning elementary excitations in these
systems, shocks and rarefaction waves. From microscopical considerations we
derive the collective velocities and shock stability conditions. The findings are
confirmed by comparison to Monte Carlo data of a multi-parameter class of
simple two lane driven diffusion models, which have the stationary state of a
product form on a ring. Going to the hydrodynamic limit, we point out the
analogy of our results to the ones known in the theory of differential equations
of two conservation laws. We discuss the singularity problem and find a dissi-
pative term that selects the physical solution.

KEY WORDS: Asymmetric exclusion process; shock; hydrodynamic limit;
system of two conservation laws.

1. INTRODUCTION

Driven many-particle systems have been the topic of numerous studies in
recent years. (1) Despite relatively simple formulation, they have rich
dynamic features and phase behaviour and proved to be useful testing
ground in nonequilibrium physics. Among the new phenomena they high-
light are, for instance, nonequilibrium boundary-driven phase transitions, (2)

spontaneous symmetry breaking, (3) and others. From the mathematical
viewpoint, dynamics of many nonequilibrium particle models are Markov



processes. The hydrodynamic limit of the latter contributes to the theory of
the differential equations of conservation laws. (4, 5)

If a driven system consists of particles of only one type (one species
case), its dynamics can be well understood in terms of elementary excita-
tions. (6) Pursuing further the approach of ref. 6, one can explain and sub-
sequently predict the stationary phase diagram for systems with arbitrary
current-density relation. (7) However, multi-species models (i.e., those
having two or more different particle types, each conserved separately)
have so far eluded careful examination. For very recent work, see ref. 8.
Earlier studies indicate a phase diagram much richer compared to the one
species case, including the existence of new phases and phase transi-
tions. (3, 9) The dynamic properties that lead to these phase transitions were
not studied.

The present paper presents a step towards understanding of how ele-
mentary excitations behave in a driven system with two species. For that
purpose, we propose a new class of models for which the stationary state
has a simple form on a ring. We study them by analytical means and sup-
plement our findings with numerical Monte Carlo simulations and mean
field calculations.

The paper is organized as follows. In Section 2 we define the model
and describe the stationary state on a ring. In Section 3 we describe how a
local perturbation spreads and obtain the eigenvalue equation for the col-
lective velocities. In Section 4 the dynamical evolution of a system with step-
like initial condition (Riemann problem) is considered. We discuss shocks
and rarefaction waves and their stability. A comparison with partial dif-
ferential equations obtained by taking the continuum limit of the micro-
scopic model is given in Section 5. Some technical details concerning the
derivation of the stationary flux and the spreading of a local perturbation
can be found in the Appendices.

2. THE MODEL

Our model consists of two parallel chains, chain A and chain B. Each
chain contains hard-core particles which hop randomly to the nearest right
or left site if it is empty. Hopping between the chains is not allowed as well
as occupation of a site by more than one particle (exclusion principle). The
hopping rate in one chain depends on the configuration of the neighbour-
ing sites in the other chain so that for each chain one has the eight possi-
bilities shown in Fig. 1. For the sake of simplicity, we consider either the
symmetric system (when the hopping rates on the both chains are the
same), or the antisymmetric system (when the rates on the different chains
are left-right reflected).
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Fig. 1. The eight allowed elementary hopping processes for the first chain, and their rates.
In the study we choose the rates for the second chain either to be the same, Eq. (1) or to be
antisymmetric (reflected with respect to the first chain), see Eq. (2).

The stationary state for a periodic system has a simple form (3) if and
only if the hopping rates (Fig. 1) satisfy the condition

a − aL+b − bL=2(c − cLen)=2(Een − EL) (1)

for the symmetric model and

a − aL=b − bL=ce−n − cL=E − ELe−n (2)

for the antisymmetric one. Here n is an arbitrary real number. For a ring of
L sites, the stationary probability of the configuration Pn1, n2 ,..., nN

m1, m2,..., mN
then has

the product form

Pm1, m2,..., mL
n1, n2,..., nL

=Z−1 D
L

k=1
exp(−nnkmk). (3)

Here nk, mk are occupation numbers for the A- and the B-chain respec-
tively, i.e., nk=0 (nk=1), if the kth site on the A-chain is empty (occupied
by a particle). Z is a normalization factor, analogous to the partition func-
tion in statistical mechanics. One can check that Eqs. (1)–(3) satisfy the
stationarity requirements by considering gain and loss processes from and
to an arbitrary configuration like it is done in ref. 10. One sees from Eq. (3)
that different sites k ] j are uncorrelated. If in addition n=0, then the
adjacent pairs of sites are also uncorrelated.

For demonstration purposes, we shall take general symmetric model
(1) and simplify it further: firstly, we forbid all backward hoppings and
secondly, we set n=0. With the above restrictions, the hopping rates satisfy
a+b=2c=2E, and can be parametrized by only one parameter b:

a=1; c=E=(1+b)/2; aL=bL=cL=EL — 0. (4)
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Since the rates must not be negative, b is in the range 0 [ b < .. b=1
corresponds to the model with no interaction between the chains, called
totally asymmetric exclusion process (TASEP). (11, 12) The other choice of the
rates a=b=c ] E, aL=bL=cL=EL — 0 was considered in ref. 9. With the
choice (4), stationary fluxes jA, jB of particles on the chains A and B are
readily computed to be

jA(rA, rB)=rA(1 − rA)(1+(b − 1) rB)

jB(rA, rB)=rB(1 − rB)(1+(b − 1) rA).
(5)

For completeness, we list here exact analytic expressions for the flux in
general case (see Appendix A for details). For symmetric hopping rates (1),

jA
sym(rA, rB)=(E − cL)(en − 1) fAB fBA+(a − aL − c+EL)(1 − rA) fAB

+(b − bL − c+EL) rAfBA+(c − EL) rA(1 − rA) (6)

jB
sym(rA, rB)=jA

sym(rB, rA)

where fAB(fBA) is the stationary probability to find a particle on chain A (B)
and a hole on the adjacent site on the other chain. This probability can be
obtained from the stationary distribution (3),

fAB=
2rA(1 − rB)

1+FAB −FBA+`1+(FAB −FBA)2 − 2FAB − 2FBA

FST=(1 − e−n) rS(1 − rT).

(7)

fBA is obtained by exchange rA Y rB in (7). For antisymmetric rates (2)

jA
asym(rA, rB)=(c − EL)(e−n − 1) fAB fBA+(a − aL − c+EL)(1 − rA) fAB

+(b − bL − c+EL) rAfBA+(c − EL) rA(1 − rA) (8)

jB
asym(rA, rB)= − jA

asym(rB, rA),

fAB being again given by (7).

3. SPREADING OF A LOCAL PERTURBATION

We shall study how an initial point-like excitation on the otherwise
homogeneous stationary background propagates in the system. For our
purposes it is convenient to adopt the quantum Hamiltonian formulation
of the stochastic process. The method is reviewed in detail in ref. 1. In this
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formulation, the state of our classic stochastic system of two chains of L
sites is represented by a vector in a vector space,

|YP … (C2) éL é (C2) éL. (9)

The stochastic dynamics is governed by a quantum Hamiltonian H acting
in that vector space, “ |YP/“t=−H |kP, with formal solution |Y(t)P=
e−Ht |Y(0)P. Stationary (i.e., time independent) states satisfy evidently
H |Ystat=0P. A particle on site k is represented by the vector (0

1) and a
vacancy by the vector (1

0) at the relevant place in the tensor product (9).
E.g., a system with only one particle on site k=2 on the A-chain and no
particles on B-chain is represented as |YP=(1

0) é (0
1) é (1

0)
éL − 2 é (1

0)
éL, etc.

Given the state of the system |YP, the expectation value of particle density
at site k on A-chain is computed by the analogue of the quantum-mechan-
ical formula

On̂kP=Os| n̂k |YP (10)

where Os|=(1 1 1 · · · 1) is the row vector with all components 1, and n̂k

is a local occupation number operator n̂=( 0
0

0
1) acting nontrivially at the

kth subspace of the tensor product:

n̂k=(I ék − 1 é n̂ é I é L − k) é I éL; I=11
0

0
1
2 . (11)

Analogously, the expectation value of particle density at site k on B-chain
is computed by averaging operator m̂k=I éL(I ék − 1 é n̂ é I é L − k).

For our choice of the rates (4) there are no bulk correlations, all con-
figurations with a fixed number of particles occur with the same probability
(see (3), n=0). Given the average particle and excitation dynamics in a
driven diffusive two-channel system density rZ on chain Z, the corre-
sponding stationary state within the quantum Hamiltonian formalism is
written as a product measure

|rArBP=11 − rA

rA
2éL 11 − rB

rB
2éL

, (12)

meaning that there is a probability to find a particle on the A-chain
On̂kP=rA and a hole OI − n̂kP=1 − rA at any site k, and Om̂kP=rB,
OI − m̂kP=1 − rB for the B-chain.
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We shall study the time evolution of the above homogeneous state in
an infinite chain − . < k < . perturbed at a single site k=0:

|Y(0)P=11+FA n̂0 − rA

rA(1 − rA)
+FB m̂0 − rB

rB(1 − rB)
2 |rArBP, (13)

where |rArBP is a stationary state (12). FA, FB are constants, determining
the strength and sign of perturbation at site 0. We shall see below that only
the ratio FA/FB is important, hence we consider FA, FB to be sufficiently
small for the averages (14) to be in a physical domain 0 [ On̂0P, Om̂0P [ 1.
The density profile corresponding to this initial state is given by the
average occupation numbers On̂kP=rA, Om̂kP=rB for all sites k ] 0. At
the site k=0 the densities correspondingly are

On̂0P=rA+FA; Om̂0P=rB+FB. (14)

The time evolution of the initial state (13) is given by a Hamiltonian H (1) of
the stochastic process

|Y(t)P=e−Ht |Y(0)P

=|rArBP+e−Ht 1FA n̂0 − rA

rA(1 − rA)
+FB m̂0 − rB

rB(1 − rB)
2 |rArBP, (15)

where we used the stationarity of |rArBP : H |rArBP=0.
Consider the quantity

S(t)=
O;k k(n̂k − rA)P
O;k (n̂k − rA)P

=
1

FA
7C

k
k(n̂k − rA)8 (16)

which tracks the position of the center of mass of the excitation on
A-chain. Denoting by d the change of the center of mass position during
the infinitesimal time interval y, we have

FAd=FA(S(t+y) − S(t)) % y
“

“t
C
k

kOn̂kP=y C
k

kO[̂
A
k − 1 − [̂

A
k P (17)

where we used the lattice continuity equation “

“t n̂k=[̂
A
k − 1 − [̂

A
k . Using

the fact that far from the excitation there is an unperturbed state with a
stationary flux O[̂

A
k P=jA, one can shift the summation variable in (17) as

C
k

kO[̂
A
k − 1 − [̂

A
k P=C

k
(k+1)O[̂

A
k P− C

k
kO[̂

A
k P=C

k
O[̂

A
k − jAP. (18)
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Finally, it can be shown (see an Appendix B) that

C
k
O[̂

A
k − jAP=

“jA

“rA FA+
“jA

“rB FB. (19)

From (17) and (19) we have

“jA

“rA FA+
“jA

“rB FB=
d

y
FA — vAFA, (20)

where vA — d
y is the collective velocity of the excitation on the A-chain.

Repeating the calculations for the B-chain, we obtain:

“jB

“rA FA+
“jB

“rB FB=vBFB. (21)

Now, if there is an interaction between the chains, the collective velocities
must coincide, since the perturbation in one chain causes the response in
the other and vice versa. Thus vB=vA=v, and one recognizes in (20, 21)
the eigenvalue equation D |FP=v |FP, where |FP=(FA

FB), and D is the
Jacobian Dik=“ji/“rk.

The solutions of the eigenvalue problem vcoll
1 , vcoll

2 and the corre-
sponding eigenfunctions |F1P, |F2P have a transparent physical meaning.
Namely, the center of mass of the initial perturbation FA

r , FB
r in the adja-

cent pair of sites will move with the velocity vcoll
r . An arbitrary initial per-

turbation |FP will propagate along the two characteristics vcoll
1 t, vcoll

2 t. The
conserved masses MZ=;k On̂Z

k − rZP of the splitted components will relate
like a1/a2 where a1, a2 are expansion coefficients given by |FP=a1 |F1P+
a2 |F2P.

Let us demonstrate the theory in the case of our stochastic model. The
Jacobian Dik=“ji/“rk is readily obtained from (5)

D=1 (1 − 2rA)(1+(b − 1) rB)
(b − 1) rB(1 − rB)

(b − 1) rA(1 − rA)
(1 − 2rB)(1+(b − 1) rA)

2 . (22)

The collective velocities vcoll
1 > vcoll

2 are the eigenvalues of D. If b=0, the
eigenvalues and corresponding eigenvectors are given by:

vcoll
1 =(1 − rA)(1 − rB); F1=R 1

− 1 − rB

1 − rA

S ; b=0; (23)

vcoll
2 =1 − 2rA − 2rB+3rArB; F2=R 1

rB

rA

S ; b=0. (24)
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Fig. 2. Time evolution of a point-like initial perturbation (+d, ± d) on a 2-chain driven
system. The parameters are: the background densities rA=rB=0.5, b=0. Left graph: at
t=0, the asymmetric perturbation drA=−drB=0.5 is put at the middle site 150. The average
density profiles after t=100 and t=200 Monte Carlo evolution steps are shown, averaged
over 6 f 105 different histories. The component A is depicted with points and the component B
with lines. Right graph: initial perturbation is symmetric drA=drB=0.5. B-component
evolution (not shown) is identical to the one of the A-component. The asymmetric perturba-
tion moves with collective velocity 0.25 to the right, and the symmetric one to the left, in
accordance with the theory (see Section 3).

Figure 2 shows the time evolution of the initially perturbed state (13) from
Monte Carlo calculations, using random sequential update. The back-
ground densities are rA=rB=0.5, which corresponds to vcoll

1 =−vcoll
2 =

0.25, |F1P=( 1
− 1), |F2P=(1

1). Hence the initial asymmetric excitation (14)
with FA=−FB must spread to the right, and the symmetric excitation
FA=FB to the left with the collective velocities vcoll

1 and vcoll
2 respectively.

This is precisely what is seen on the Fig. 2. An arbitrary excitation

1FA

FB
2=

FA+FB

2
11

1
2+

FA − FB

2
1 1

− 1
2 (25)

will split in two with the masses ratio (FA − FB)/(FA+FB), spreading
apart to the right and to the left from the origin.

4. SHOCK WAVES, RAREFACTION WAVES, AND THEIR

COMBINATIONS

Now we ask the question: if we have prepared the system in a step
function (shock) state with constant stationary backgrounds (rA

L , rB
L) and

(rA
R , rB

R) at the left half space k < 0 and the right half space k \ 0, respec-
tively, what will happen with their interface?
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Suppose interface will start moving. Due to mass conservation the
Z-component of the interface should move with the velocity

VZ(L, R)=
jZ

R − jZ
L

rZ
R − rZ

L

(26)

where we used shortened notation jZ
L(R)=jZ(rA

L(R), rB
L(R)), and the VZ(L, R)

marks the fact that the velocity is computed between the backgrounds ‘‘L’’
and ‘‘R.’’ If VA(L, R)=VB(L, R), the two interfaces evolve coherently,
similar to the case discussed below (Fig. 4). If however VA(L, R)=
VB(L, R), then the incoherent motion in the A-chain will influence the
B-chain and vice versa, destroying the interface. The possible way out for
the system is to develop a plateau ‘‘0’’ in the middle, interpolating between
the plateaus ‘‘L’’ and ‘‘R’’, as shown on Fig. 4. Consequently, instead of
one there will be two interfaces in each chain: the interface L | 0 between
‘‘L’’ and ‘‘0’’ and the interface 0 | R. We must require the velocities in the
A- and B-chains to be the same. The interface L | 0 has the velocity

V(L, 0)=
jA(L) − jA(0)

rA
L − rA

0

=
jB(L) − jB(0)

rB
L − rB

0

(27)

and analogously for the interface 0 | R

V(0, R)=
jA(R) − jA(0)

rA
R − rA

0

=
jB(R) − jB(0)

rB
R − rB

0

. (28)

The solutions of Eqs. (27) and (28) define the location of possible
middle plateau densities rA

0 , rB
0 . Since (27, 28) are nonlinear, they can have

several solutions or no solutions at all. If a solution exists (see Fig. 3), one

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ρ B

Aρ

Fig. 3. Curves, showing locus of the points rA
0 , rB

0 , solving Eq. (27) with rA
1 =0.15, rB

1 =0.3
(thin curves) and Eq. (28) with rA

2 =0.6, rB
1 =0.75 (bold curves). b=0.2. Crossings of the

bold curves with the thin curves indicate possible solutions of (27, 28).
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Fig. 4. Formation of a shock wave. Parameters are: b=0.2. Left: the initial distribution:
A-particles are distributed randomly with an average density 0.15 (0.6) on the left (on the right).
Corresponding B-particles initial densities are 0.3 (0.75). Right: Result of Monte Carlo evolu-
tion after t=200 Monte Carlo steps, averaged over 2 f 105 different histories. The density
profiles of A and B particles are depicted with points of different sizes, and the lines with
theoretically expected middle shock values rA % 0.3146, rB % 0.8323 are drawn for comparison.

must require additionally V(L, 0) < V(0, R) because the plateau ‘‘0’’ has to
expand, and check the shock stability as discussed below.

In order to study the shock stability let us consider a shock of the
form ‘‘L |0| R’’ consisting of three consecutive plateaus at densities rZ

L , rZ
0

and rZ
R . A small deviation at the plateau ‘‘K’’ (K=0, L, R) will split into

two local excitations with the velocities vcoll
1 (K) > vcoll

2 (K) as discussed in
Section 3. In order for the shock to be stable, all local excitations have to
be absorbed by the interfaces, that is,

vcoll
1 (L), vcoll

2 (L) > V(L, 0) > vcoll
2 (0) (29)

for the interface L | 0 and

vcoll
1 (0) > V(0, R) > vcoll

2 (R), vcoll
1 (R) (30)

for the interface 0 | R. An example of such a double shock is shown on
Fig. 4. The densities of particles rA

0 , rB
0 on the middle plateau satisfy

Eqs. (27) and (28), which are graphically solved on Fig. 3. There are two
solutions, one of which is realized (Fig. 4), while the other one violates
V(L, 0) < V(0, R). One can check that (29, 30) are satisfied.

If the second shock condition (30) is not satisfied, but instead one has

vcoll
2 (0) < V(0, R) < vcoll

2 (R), vcoll
1 (R); vcoll

1 (0) > V(0, R), (31)

then the local perturbations will destroy the sharp interface, leading to a
rarefaction wave connecting the plateaus 0 | R, similar as discussed for one-
component systems. (1, 7) An example of a rarefaction wave formation is
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Fig. 5. Formation of a rarefaction wave. Parameters are: b=0. The initial distribution is a
Riemann step, with A-particles being distributed randomly with the average density 0.8(0.2)
on the left (on the right). Corresponding B-particles initial densities are 0.4(0.1). The quantity
(26) has here a meaning of the velocity of a mass transfer and is the same for both compo-
nents VA(L, R)=VB(L, R)=−0.08, therefore only one wave is formed. The rarefaction wave
condition (31) is satisfied. We show a result of Monte Carlo evolution after t=50, 100 Monte
Carlo steps, averaged over 2 f 105 different histories.

shown on Fig. 5. The origin of conditions (30), (31) lies in the analytical
properties of eigenvalues of the Jacobian Dik=“ji/“rk, that is, collective
velocities vcoll

1 (l), vcoll
2 (l), where l is a running coordinate along the curve

defined by an average density profile rB(l)(rA(l)). An excellent discussion
on the subject for the case of infinitesimally small shocks and rarefaction
waves can be found in ref. 14.

One may ask what happens if neither shock-wave nor rarefaction-wave
condition are satisfied. In this case a combination of both shock and rare-
faction wave may be formed as illustrated on the example Fig. 6. There for
simplicity we have taken symmetric initial conditions so that Eqs. (27, 28)
are satisfied for arbitrary rA

0 =rB
0 . The velocity of the mass transfer (26)

between the left (L) and right (R) plateaux respectively is the same for
both chains VA(L, R)=VB(L, R), but the collective velocities vcoll

1 (R),
vcoll

2 (R) < V(L, R) and vcoll
1 (L), vcoll

2 (L) < V(L, R) satisfy neither the shock-
type (30) nor the rarefaction-wave (31) criterion. As a result, a compromise
is made: part of the profile with the high densities r … (rL, r*) develops a
shock while for the small densities r … (r*, rR) the rarefaction wave is
formed, see Fig. 6. Indeed for the interface (rL, r*+E), E ° 1, the shock
condition analogous to (30) is satisfied while the interface (r* − E, rR)
satisfies respective rarefaction wave condition (31). The level r*=0.525 is

Shocks and Excitation Dynamics in a Driven Diffusive Two-Channel System 533



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

d
e
n
s
i
t
y
 
p
r
o
f
i
l
e
s

sites

t=100

t=200
t=150

Fig. 6. Time evolution of a step-like initial profile, leading to shock wave and rarefaction
wave coexistence. The parameters are: the left densities rA=rB=0.95, the densities on the
right rA=rB=0.3, b=0. The graph shows the average density profiles at t=0, 100, 150,
200, symmetric in both components. Average over 105 histories is made. For the densities
r=r*=0.525 and higher, the shock wave is formed, while for the lower densities r < r* one
observes the rarefaction wave (see the end of Section 4 for details). The level r=r* is marked
by a thin line.

defined by the crossing point V(rL, r*)=vcoll
2 (r*) and can be predicted by

hypothetical consideration of the initial condition as a sequence of small
plateaus (shocks) at each level of density. All small shocks above r=r*
condense in a single shock while those below r* form the rarefaction wave.
Similar analysis can be performed for other initial conditions. Note that for
certain class of initial conditions we observe shocks of even more compli-
cated structure. Their analysis will be presented elsewhere.

5. HYDRODYNAMIC LIMIT: COMPARISON WITH THE THEORY OF

PARTIAL DIFFERENTIAL EQUATIONS

For most notions we have discussed in the framework of the stochastic
particle system, one can find the respective analogies in the theory of
partial differential equations (PDE). The naive continuum (Eulerian) limit
of our stochastic dynamics on the lattice n̂k(t) Q rA(x, t), m̂k(t) Q rB(x, t)
is a system of conservation laws

“rZ(x, t)
“t

+
“jZ(rA, rB)

“x
=0; Z=A, B, (32)

where jZ is given by Eqs. (5)–(8). Here and below in this section we shall
use rZ(x, t) for a continuously changing variable, not to be confused with
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constant rA, rB from Section 3. Such systems of conservation laws are
studied, e.g., in refs. 13 and 14.

The eigenvalues of the Jacobian “ji

“r
k (playing the role of collective

velocities) are the characteristic velocities. For scalar conservation law
“r/“t+“j(r)/“x=0 with “j(r)/“r=v(r) it follows that the line x=v(r) t,
called characteristic, defines the space-time trajectory on which the local
density r(x, t) stays constant. For systems (32) of conservation laws, the
situation is more complicated. However also there one can find two func-
tions wi(rA, rB); i=1, 2, called Riemann invariants, which are constant
along the respective characteristics dx

dt=vi. (14)

Consider now a shock of the type drawn in Fig. 4. In the hydrody-
namic limit, the interface region between the plateaus of constant densities
will squeeze to a single point, giving rise to discontinuous change. Discon-
tinuities in PDE theory are known to satisfy the so-called jump condition
vs(rZ

+ − rZ
− )=(jZ

+ − jZ
− ) where F+ and F− are the values of function F in

the right and left edges of the discontinuity, and vs is the speed of the
propagation of the discontinuity. Comparing with (26) we recognize in vs

the shock velocity.
It is well known that an arbitrarily chosen smooth initial profile

rZ(x, 0) will develop a singularity after finite time t. (13, 14) To cure the sin-
gularity problem for the PDE, the simplest possible approach suggests
adding a vanishing viscosity term (o “

2
r

Z

“x2 ; o Q 0) to the right-hand side
of (32). This is enough to avoid singularities and by numerical integration
we find that this regularization term leads to the correct answer for the
initial Riemann problem, as compared to the stochastic model.

Another possibility to obtain a viscosity term is to average exact lattice
continuity equations of the stochastic process

“

“t
n̂k=[̂

A
k − 1 − [̂

A
k (33)

“

“t
m̂k=[̂

B
k − 1 − [̂

B
k (34)

for occupation number operators On̂kPQ rA(x, t), Om̂kPQ rB(x, t), allow-
ing for continuous change of space k, k+1 Q x, x+dx. For the case (4),
the flux operator [̂

A
k can be obtained from the general expression (A.1) and

it reads

[̂
A
k =n̂k(1 − n̂k+1) 11+

b − 1
2

(m̂k+m̂k+1)2 . (35)
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[̂
B
k is obtained by an exchange n̂ Y m̂ in the above. We substitute (35) into

(33), (34), average, factorize and Taylor expand the latter with respect to
site spacing dx as, e.g., Om̂k+1P=rB(x, t)+dx “rB(x, t)

“x +(dx2/2) “2rB(x, t)

“x2 + · · · .
Keeping the terms up to dx2 in the expansion, we obtain

“rA

“tŒ
+

“jA(rA, rB)
“x

=o
“

“x
1 (1+(b − 1) rB)

“rA

“x
2 (36)

“rB

“tŒ
+

“jB(rA, rB)
“x

=o
“

“x
1 (1+(b − 1) rA)

“rB

“x
2 (37)

o=
dx
2

Q 0;
“

“t
=2o

“

“tŒ
. (38)

where jZ(rA, rB) are given by the (5).
We found by a numerical integration of (36), (37) that also here the

correct result are obtained for the step-function initial conditions. It seems
therefore that the choice of viscosity matrix is rather arbitrary, if initial step-
function conditions are chosen. However, the PDE becomes more sensitive
if solved on a finite interval with fixed boundary values. In this setting,
the choice of viscosity is important, since different choices give different
answers. The details will be published elsewhere.

6. CONCLUSION

To conclude, we have studied a two lane particle exclusion process on
the microscopic level, focusing on the temporal behaviour of the elemen-
tary local excitations, domain walls (shocks) and rarefaction waves. By
analyzing the flow of localized excitations and calculating their collective
velocities we derived a criterion for the stability of shocks, somewhat
analogous to our recent analysis of systems with a single conservation
law. (1) However, unlike in systems with a single conservation law, shocks
generically come in pairs, since the two conserved densities give rise to two
distinct collective velocities. Because of the interaction between the chains,
or more generally, between the two conserved densities, these velocities are
the eigenvalues of the Jacobian of the current-density relation. The eigen-
vectors of the Jacobian parametrize the expansion of the strength of a
generic excitation into the two eigenmodes of the systems. These eigen-
modes (corresponding to the special case of a single excitation) correspond to
a special tuning of the strength of the excitation in each conserved density:
The relative strength for an eigenmode with fixed collective velocity is the
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ratio of the components of the corresponding eigenvector. Initial profiles
not satisfying the stability criterion for shocks evolve into rarefaction
waves or more complicated structures. Since nowhere in our analysis we
make use of the specific properties of our model we argue that as in
systems with a single conservation law, all the properties discussed above
can be derived from the macroscopic current, irrespective of the micro-
scopic details of the model.

Going one step further we take a naive continuum limit (Euler scale)
to obtain a system of coupled nonlinear PDE’s. Thus we obtain a micro-
scopic interpretation for the characteristics (as flow of localized perturba-
tions) and for the jump condition for shock solutions. Monte Carlo simu-
lation of the model as well as numerical integration of the PDE’s suggest
that the uniqueness problem for the Riemann problem can be resolved by
using a quite arbitrary viscosity matrix with vanishing viscosity. However,
for the stationary solution with fixed boundary values the problem appears
to be more intricate. A detailed analysis is necessary and will be presented
in future work. The hydrodynamic limit of another family of lattice gas
models with two conservation laws, differing from ours by internal sym-
metries, has been studied recently. (8) They give rise to a different set of
PDE’s, but we believe that our analysis can be applied to this family as
well. On the other hand we also expect that the mathematically rigorous
work of ref. 8 can be generalized to models of the type considered here.

APPENDIX A. CURRENT-DENSITY RELATION IN THE GENERAL

CASE

By definition, the stationary flux is written as sum of the hopping rates
times the stationary probabilities W of the corresponding local configura-
tions, see Fig. 1:

jA(rA, rB)=aW(n

N

n

n
)+bW(N

N

N

n
)+cW(N

N

n

n
)+EW(n

N

N

n
)

− aLW(n

n

n

N
) − bLW(N

n

N

N
) − cLW(N

n

n

N
) − ELW(n

n

N

N
). (A.1)

Here we introduced the short notation W(n

N

n

n
) for the probability to find the

configuration with one particle (filled circle N) and 3 holes (empty circle n),
arranged like in Fig. 1, first configuration on the upper row), in a steady
state with average densities rA and rB. Analogously, W(N

N

N

n
) is the probabil-

ity to find 3 particles, 1 hole as in Fig. 1, second configuration on upper
row. In terms of occupation number operators n̂k, m̂k for chains A (bottom
circles) and B (upper circles),

W(N

N

N

n
)=On̂k(1 − n̂k+1) m̂km̂k+1P, (A.2)
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and so on. If the rates satisfy (1) and (2) in the symmetric and antisymme-
tric case respectively, then the correlation function can be factorized due
to (3), e.g.,

On̂k(1 − n̂k+1) m̂km̂k+1P=On̂km̂kPO(1 − n̂k+1) m̂k+1P=rBOn̂km̂kP−On̂km̂kP
2.

(A.3)

Above we used the translational invariance and the fact that Om̂kP=rB,
On̂kP=rA. Factorizing Eq. (A.1), and using (1), (2), one obtains

jA(rA, rB)=KW(n

N
) W(N

n
)+(1 − rA)(a − aL − c+EL) W(n

N
)

+rA(b − bL − c+EL) W(N

n
)+rA(1 − rA)(c − EL)

where

K= − a+aL − b+bL+E+c − EL − cL

=3(E − cL)(en − 1), symmetric case
(c − EL)(e−n − 1), antisymmetric case.

(A.4)

Finally, W(n

N
)=On̂k(1 − m̂k)P can be calculated directly from the

stationary distribution (3) which after some algebra gives the expression
(7). W(N

n
) is obtained from (7) by exchanging rA

Y rB.

APPENDIX B. PROOF OF EQ. (11)

Consider L=; k O [̂
A
k − jAP, which is by definition

L=C
k
Os | ([̂

A
k − jA) e−Ht 11+FA n̂0 − rA

rA(1 − rA)
+FB m̂0 − rB

rB(1 − rB)
2 |rArBP

(B.1)

Os| is the constant row vector (1 1 1 · · · 1) (see ref. 1 for details). First,
Os| [̂

A
k |rArBP=jA by the definition of the stationary flux. Thus (B.1) is

simplified as

L=C
k
Os| [̂

A
k e−HtFA n̂0 − rA

rA(1 − rA)
|rArBP+Os| [̂

A
k e−HtFB m̂0 − rB

rB(1 − rB)
|rArBP.

(B.2)
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Due to translational invariance, the above expression can be rewritten as

C
k
Os| [̂

A
0 FAe−Ht n̂k − rA

rA(1 − rA)
|rArBP+Os| [̂

B
0 FBe−Ht m̂k − rB

rB(1 − rB)
|rArBP.

(B.3)

Because the total number of particles in each chain is conserved, the
Hamiltonian H commutes with ; k n̂k, ; k m̂k. Using this, and the fact that
the |rArBP is stationary, the term e−Ht can be deleted from (B.3). Sub-
stituting the definition of |rArBP from (12) into the expression below, we
have

C
k

(n̂k −rA) |rArBP

=C
k

11−rA

rA
2ék−1 51 −rA

0
0

1−rA
2 11−rA

rA
26 11−rA

rA
2éL−k−1 11−rB

rB
2éL

=rA(1−rA)
“

“rA |rArBP. (B.4)

Here we have used the explicit representation of the particle number opera-
tor n̂=(0

0
0
1). Analogously, ; k (m̂0 − rB) |rArBP=rB(1 − rB) “

“r
B |rArBP.

Substituting this together with (B.4) in (B.3) we obtain Eq. (19).
Note the specific fact that the stationary state in our system is a

product measure (12). However the validity of the result (19) extends to a
much wider class of driven systems with short-ranged correlations.
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